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ABSTRACT 
The point-arboricity p(G) of a graph G is defined as the minimum number of 
subsets in a partition of the point set of G so that each subset induces an 
acyclic subgraph. Dually, the tulgeity )(G) is the maximum number of 
disjoint, point-induced, non-acyclic subgraphs contained in G. Several 
results concerning these numbers are presented, among which are formulas 
for the point arboricity and tulgeity of the class of complete n-partite graphs. 

Introduction. The arboricity of a graph G is defined as the minimum number 
of subsets into which the line set of G can be partitioned so that each subset 
induces an acyclic subgraph. The arboricity of the complete graphs and complete 
bipartite graphs has been studied by Beineke [1] and that of graphs in general 
by Nash-Williams [6, 7]. Dual to the concept of arboricity is the maximum 
number of line-disjoint subgraphs contained in G so that each subgraph is not 
acyclic. Since each such subgraph may be assumed a cycle, this number is referred 
to as the cycle multiplicity of G. A formula for the cycle multiplicity of complete 
graphs and complete bipartite graphs is given in [2]. 

Analogous to the numbers just described are their point versions, as discussed 
in 12], which are dual in the same sense as arboricity and cycle multiplicity. The 
point-arboricity p(G) of a graph G is the least number of subsets into which 
the point set of G can be divided so that every subset induces an acyclic subgraph. 
Clearly, p(G) > 1 for every nonempty graph G and p(G) = 1 if and only if G 
itself is acyclic. It is the main object of this article to investigate the concept of 
point-arboricity. In addition, however, we consider the dual topic of the tulgeity 
or point-cycle multiplicity T(G) of a graph G, defined as the maximum number 
of disjoint, point-induced subgraphs contained in G so that no subgraph is acyclic. 
Of course, z(G) = 0 if and only if G is acyclic. Equivalently, z(G) is the maximum 
number of disjoint cycles in G. All graphs considered in this paper are finite and 
contain no loops and no multiple edges. 

Basic Results. We begin by presenting a few elementary results concerning 
point-arboricity and tulgeity. 

A subgraph H of a graph G is point-induced if every line of G which joins 
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two points of  H is also a line of H. A subgraph is line-induced if it contains no 
isolated points. 

A maximal connected subgraph is a component of G while a maximal connected 
subgraph containing no cutpoints is a block of G. Since every cycle of G is ne- 
cessarily contained in a block and hence in a component of G, we arrive at the 
following observation. 

THEOREM 1. For any graph G 
(i) p(G) = maxp(C) = maxp(B) and 
(ii) z(G) = ~ z ( C )  < ~ z ( B ) ,  

the maxima and sums being taken over all components C and blocks B of G, 
respectively. 

The chromatic number x(G) is the minimum number of subsets in a partition 
of  the point set of G such that each subset induces a subgraph containing no 
lines. Each such subset is called a color class. Since each color class is acyclic 
and every acyclic graph is 2-colorable, it follows that p(G) < X(G) < 2p(G) for 
every graph G. The point-arboricity may also be interpreted as a "coloring 
number,"  since p(G) is the minimum number of colors needed to color the points 
of  G so that no cycle has all its points colored the same. 

We now present an upper bound for p(G) in terms of  the maximum degree 
of  the points of G. By {x} is meant the least integer not less than x. 

THEOREM 2. If  maxdegG denotes the maximum degree of the points of G, 
then 

p(G) < {.1+ 7xdegG}_ 

Proof. We proceed by induction on the number p of  points of  G, the result 
being obvious for p = 1. We thus assume the formula holds for all graphs H 
having p - 1 points, p > 2, and let G be a graph with p points. Select a point v 
of  G, and consider the graph G - v obtained from G by deleting v and all lines 

incident with v. By hypothesis, 

p ( G _ v ) = r  < { l +maxdeg(G-v) } 
= 2 " 

Hence it is possible to partition the point set V - {v} of  G - v into subsets 
1:1, 1:2, "", ~ so that each gi induces an acyclic subgraph. If  

r <  { l+maxdegG}2  ' 

then the partition 1:1,1:2, "", V,, {v} produces the desired result. On the other hand, 
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{1 + m a x d e g G  } 
if r = 2 . , at least one of  the subsets V~, 1 < i <  r, contains at 

most one point adjacent with v. If  Vj is such a set, then each of the r subsets 
1"1, V2,'", Vj u {v},..., V, induces an acyclic subgraph, completing the proof. 

The preceding result is best possible since the upper bound is the actual value 
of  the point-arboricity in the case of  complete graphs. For the class of planar 
graphs this bound is not particularly useful since such graphs may contain points 
of high degree. However, we have already observed that p(G) < z(G) so that by 
the Five Color Theorem, p(G) is certainly no greater than 5 for planar graphs G 
and probably no larger than 4. This leads us to our next result, which is also 
discussed in [2]. 

THEOREM 3. For every planar graph G, 

p(G) 6 3. 

Proof. We proceed by induction on the number p of  points of  G, the result 
holding trivially for p = 1. 

Assume p(G') <_- 3 for all planar graphs G' having p > 1 points, and let G be a 
planar graph with p + 1 points. Since G is planar, it contains a point v of degree 
five or less. The graph G - v obtained from G by removing v (and all lines incident 
with v) is planar and has p points; therefore p(G - v) =< 3. Thus, the point set of 
G - v can be partitioned into three (not all necessarily nonempty) subsets Vx, 112, Va 
such that each V~ induces an acyclic subgraph of  G - v. Since the degree of v does 
not exceed 5, at least one of the subsets V~ contains at most one point which is 
adjacent with v. Let 1"1 be such a set. Then Vx • {v}, V2, Va constitutes a partition 
of  the point set of G such that each subset induces an acyclic subgraph. Hence 
p(G) <= 3. 

Of course, for all planar graphs G for which p(G)< 2, it follows that 
x(G) < 4; therefore a search for a planar graph which would disprove the Four 
Color Conjecture must be made among those planar graphs having point-ar- 
boricity 3. 

A subdivision of a graph G is a graph obtained from G by replacing some line 
x = uv of G by a new point w and the two new lines uw and wv. Two graphs 
G1 and G 2 are homeomorphic if there exists a pair of  isomorphic graphs G~ and G~ 
such that G[ can be obtained from G~, i = 1,2, by a sequence of subdivisions. 
If  G' is obtained from G by subdivision, then clearly p(G') < p(G). 

If every line of  a graph G is subdivided, then a bipartite graph G' results so 
that x(G') = 2. Thus p(G') _-< 2. Since G and G' are homeomorphic, we see that 
in general homeomorphic graphs need not have the same point-arboricity. It is, 
however, a routine matter to establish the following result. 

REMARK. If G 1 and G 2 a r e  homeomorphic, then z(GI) = z(G2). 
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Bounds for ~(G) have been obtained by Corr/~di and Hajnal [3] and by Dirac 
and Erd6s [4]; in particular, it was shown in [3] that if G is a graph with p > 3k 
points having rain degG ~ 2k, then z(G)=> k. 

The Point-Arborieity of Complete n-Partite Graphs. The complete n-partite 
graph K(.p2, P2, '" ,  P~) has its point set Vpartitioned into n disjoint nonempty subsets 
V~, where [ V~[ = p~, such that a line joins two points u and v if and only if u e VI 
and v E V~, where j ~ k. If  p~ = 1 for every i, the graph is complete. If n = 2 
the graph is called complete bipartite. 

As was mentioned earlier, one of  the major problems dealing with arboricity 
and cycle multiplicity has been the determination of  these numbers for the com- 
plete graphs and the complete bipartite graphs. We now consider the question 
of finding the point-arboricity and tulgeity of the complete n-partite graphs. 
We begin with point-arboricity. 

Since x(K(pl ,p2,  "",P~)) = n, we know that p = P(K(pl,P2, "",P~)) ~_ n. The 
amount by which p and n differ is given next. 

THEOREM 4. The point-arboricity of the complete n-partite graph 

K(pl,P2, "",Pn), 1 ~ Pl ~- P2 ~ "'" < P~, Is given by 

p(K(pl, P2,'",P,))  = n - max k ~ pi -< n - k , 
0 

where we define Po = 0 .  

Proof. We employ induction on n. For n---1, p(K(Pi ) )=  1 follows im- 
mediately. 

Assume the formula holds for n, n -__ 1, and consider the graph K(pl ,  P2," ' ,  P,+ 1) 
with subsets V1, V2,..-,V~+I as described in the definition. For the subgraph 

t K(Pl,Pz, '" ,P~),  suppose that ~ o p ~ <  n - t but that y~+lp~> n - ( t  + 1 ) .  By 
hypothesis, then p(K(pa,p2, . " , p~ ) )=  n -  t. Since K(Pl,P2, "',P~) is a sub- 
graph of K(pl,Pz, '",Pn+~), p(K(pl,P2, '" ,Pn)) ~_ P(K(pl,P2, '" ,Pn+I)) .  Also, 
since the additional set of p~ + 1 points used in forming K(pl,  P2, '" ,  P~+ 1) induces 
an acyclic subgraph, it follows that p(K(pl,  P2, '" ,  P,+ 1)) < p(K(pl,  P2, "" ", P~)) + 1. 
We now consider two cases. 

Case 1. Suppose ~ + l p i > ( n  + l ) - ( t  +1)  = n -  t. This implies that 
(n + 1) - max {k I ~0 P~ < (n + 1) - k} = n + 1 - t. Thus in this case we wish 
to show that p(K(pl,p2,  "",Pn+l)) = p(K(pl,P2,-",pn)) + 1. Assume this is not 
the case so that p(K(pi,P2, '",P~+I)) = p(K(pl ,p2, '" ,p~)) .  The complete 
(n+ l ) -pa r t i t e  graph K(Pl ,p2, . . . ,p t ,p t+a, . . . ,p t+x)=K ' is a subgraph of  
K(p 1, P2, '" ,  P, + 1); therefore, p(K')  < p(K(p 1, P2, '" ,  Pn + i)) = p(K(Pl, P2, '" ,  P~)) 
= n - t. However, K '  contains ~ +  1 p~ + (n - OPt + i points, which implies that 

in any partition of  the point set of  K '  into n - t (or fewer) subsets, at least one 
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such subset must contain at least (~,'o+lp~ +(n - OPt+l)/(n - t) points. How- 
ever, ~ +  1 p~ > n - t so that one of  the subsets of the partition contains at least 
Pt + 1 + 2 points. It is now easy to see that such a subset induces a subgraph con- 
taining a triangle if Pt + 1 -- 1 or a 4-cycle if p,+ 1 > 1. This is a contradiction. 

Case 2. Suppose ]~+ 1 p~ ~ n - t .  
Since ]~+lp~ > n - t - 1, it follows directly that ~+2p~ > n - t - 1 so that 

in this case (n + 1) - max {k I ~ p, ~ (n + 1) - k}  = (n + 1) - (t  + 1) = n -  t. 

Therefore we wish to show here that p(K(pl, P2,'", Pn+ 1)) = P(K(Pl, P2,'", P~)). 
Since ~ , ' o + l p , < n - t  or, equivalently, since [ V : u V 2 u . . . u V , + ~ I  < 
J {v,+ 2, v,+3,..., vn+l} I we may add one element from 1"1 u 1:2 u . . .  u V, +1 to 
each of the sets V,+2,V,+3,...,V~, where s < n  +1  so as to exhaust 
1:1 U 1:2 U ... U V,+~. Since each set Vj u (u}, t + 2 ~ j  < s, induces the acyclic 
subgraph K(1,pj), we have p(K(p l ,p2 , . . . , p~+l ) )<n- t  which implies that 

p(K(pl,P2, "",Pn+l)) -- n - t. 
The point-arboricity of  the complete graphs and complete bipartite graphs 

can now be given. 

COROLLARY 4a. For the complete graph Kp with p points, 

while for the complete bipartite graph K(pl, p2), Pl ~- P2, 

2 if p t > l  

P(K(p~'P2)) -- 1 if Pl = l -  

T h e  Tulge i ty  o f  C o m p l e t e  n-Partite Graphs. In this section we derive a for- 
mula for the tulgeity of  the complete n-partite graphs. 

Since x(G) is the maximum number of  disjoint cycles in G and since every 
cycle contains at least three points, an obvious upper bound is obtained. 

REMARK. For  any graph G with p points, z(G)___< [p/3].  
A result which will be useful in the proof  of  Theorem 5 to follow involves the 

concept of a maximum matching. A maximum matching in a graphG is a maxi- 
mum set M of  lines so that no two lines of M are adjacent. The following formula 

was presented in [2]. 

TnF~OREM. I f  M is a maximum matching in the complete n-partite graph 
K(pl,P2, '" ,P,) ,  I ~-pl < P2 <='" < P,, and ~, Pt ~=P, then 

IMI - rain p,,[p/2 , 

where Po = O. 
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We now present a formula for the tulgeity of the complete n-partite graphs. 

THEOREM 5. For the complete n-partite graph G = K(pl ,P2, . . . ,p , ) ,  
l < pl < p2 < ... <= p,, and ~,p~ = p, 

~(G) -- rain p~ , [p/3 , 

where Po = 0. 

Proof. We begin with a few preliminary observations. Any point-induced 
subgraph of K(p~,p2,'",Pn) which is a cycle necessarily contains points from 
at least two of the subsets V1, V2, "" In. If such a cycle contains points from exactly 
two of the subsets V~, then the cycle has precisely two points from each of the 
two subsets in which case a 4-cycle results. The only other possibility is a triangle 
which contains a point from each of three different subsets V~. Thus for 
K(pl ,P2 , ' " ,p , )  we wish to determine the maximum of disjoint triangles and 
4-cycles. 

It is obvious that z(K(p~,p2)) =[p~/2] since K(pl,p2 ) has no triangles. 
The maximum number of disjoint triangles in K(pl,P2,P3) is clearly p~. The 

deletion of Pl points from each of 1:1, V2 and V3 results in a graph which has a 
maximum of 1½ (P2 - Pl)] disjoint 4-cycles. Thus, z(K(p~, P2, P3)) > P~ +I½(P2-P~)] 
= [½(P~ +P2)], but since every cycle contains at least two points not in 1"3, 
z(K(pl, P2, Pa)) < [½(Pl + P2)]. Therefore z(K(pl, P2, P3)) = [½(Pl q" P2)]" 

For n > 4, we use induction on p and consider 3 cases, the formula being 
evident for small values of p. 

Case 1. Suppose ~-2p~ < p~_ 1. 
Since ~ - 2 p ~  < p~_~, a maximum matching for K(pl,  P2,'",p,,-1) contains 

En-- 2 1 p~ lines. These lines together with ~ - 2 p ~  points in Vn determine 
~-2p~ disjoint triangles in G = K(pl ,P2 ," ' ,p , ) .  From the remaining points 

in ~ _  1 and ~ ,  [½(p,_ 1 - ~-2p~)] disjoint 4-cycles are determined. Therefore 
z(G) >= ~.~nl-2pl -F [½(Pn-1 -- ~-2pi ) ]  = I'½ ~ - l p j .  Since every cycle contains 
at least two points not in In, z(G) < [½ ~ - 1  pj .  Thus, z(G) = [½ ~ - 1  p,]. 

n-2 Case 2. Suppose p < 3 p ~ a n d  ~1 PI>P~-I .  
In this case a maximum matching in K(p~,P2, ' " ,p , - I )  contains [½ ~ - ~ P i ]  

lines. Since [½ ~ - l p ~ ]  < p~ there are sufficientIy many points in V, to determine 
[ ½ ~ - ~ p J  disjoint triangles implying that T ( G ) > [ ½ ~ - ~ p J .  Now 
z(G) = [½ ~ -  l p j ,  for as before, we always have the inequality ~(G) < [½ ~ -  lpj. 

Case 3. Suppose p > 3p~. 
In this case, we assume the formula holds for all complete n-partite graphs 

with less than p points. We select a triangle in K(p~,p2 , ...,p,_~) and remove a 
point from each of the three subsets involved. We then relabel the subsets as 
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V;, V~,..., Vn" where ] ~ l  = P/so that p" = p, and ~ - 1  p, = ~ - 1  p, _ 3. Some 
of  the sets V~' may be empty. By the inductive hypothesis, z(K(p~, P'2, "" ,P'))  

= rain(J½ E~- lp, j ,  [jr E~p'J) = rain(J½( ~ -  lp, - 3)], [p/3 - 1]). This implies 
that z(G) ~ 1 + min([½ E ~ - ~ p , -  3)], [p/3 - 1]) = min([½( E ~ - ~ p , -  1)], [p/3]). 

From p > 3pn it follows that [½( ~ ' - ~ P s -  1)] > [p/3].  This completes the proof. 

REFERENCES 

1. L.W. BEINEKE, 1964, Decompositions of complete graphs into forests. Magyar Tud. Akad. 
Mat. Kutat6 Int. K6zl., 9, 589-594. 

2. G. CHARTRAND, D. GELLER, AND S. HEDETNIEMI, Graphs with forbidden subgraphs (to 
appear). 

3. K. CORRADI AND A. Ha.rNAL, 1963, On the maximal number of independent circuits in a 
graph, Acta Math. Aead. Sci. Hngar., 14, 423--439. 

4. G. DmAc AND P. ERD6S, 1963, On the maximal number of independcnt circuits in a graph, 
Acta Math. Acad. Sci. Hungar., 14, 79-94. 

5. F. HARARY, editor, 1967, A Seminar on Graph Theory, Holt, Rinehart, and Winston, New 
York. 

6. C. ST. J. A. NAsa-WILLIAMS, 1961, Edge-disjoint spanning trees of finite graphs J. London 
Math. Soc., 36, 445-450. 

7. C. ST. J. A. NAsa-WILLIAMS, Decomposttion of  finite graphs into forests, J. London Math. 
Soc., 39, 12. 

WESTERN MICHIGAN UNIVERSITY, 
SUNY AT BINGHAMTON, 
MICHIGAN STATE UNIVERSITY 


